Wednesday, November 1, 2023

Ions Effectively Inhibit Airborne Bacteria Viability

 By: Destinee Lopez

Figure 1 (A and B) S. aureus (A) and E. coli (B) plated at 104 CFU/ml on 150-mm petri dishes were subjected to a direct ion effect, with the ionizer positioned 5 or 10 cm away. n ≥ 3 duplicate studies. *, Student's t-tests; P < 0.05.

Human health depends on indoor air quality, and since airborne pathogens can be harmful, there is growing interest in air ionization technology as a potential means of reducing bacterial growth and improving overall air quality. This study investigates the impact of ion exposure on the survival of Staphylococcus aureus and Escherichia coli bacteria, regardless of whether the bacteria is trapped in air filters or plated on agar. Potential variations in the effects of exposure are examined, which may be influenced by factors such as filter type, action area, distance from the ion generator, bacterial type and load, and exposure time. This study supports the potential use of air ionizers for preventing and controlling indoor airborne infections by offering essential insights into the solid antibacterial activity of air ions and demonstrating their effectiveness in lowering the viability of common airborne pathogens, such as S. aureus and E. coli, under a variety of conditions. The purpose of the experiment was to determine how different experimental conditions, such as bacterial type and load, action area, distance from the ion generator, exposure time, and filter type, affected the viability of Staphylococcus aureus and Escherichia coli bacteria, both plated on agar and trapped in air filters. The results supported the potential use of air ionizers for preventing and controlling indoor airborne infections by showing a significant and consistent antibacterial activity of both positive and negative ions, which reduced the viability of both Staphylococcus aureus and Escherichia coli bacteria, whether plated on agar or trapped in air filters, across various experimental conditions. 

Original article: Comini, Mandras, N., Iannantuoni, M. R., Menotti, F., Musumeci, A. G., Piersigilli, G., Allizond, V., Banche, G., & Cuffini, A. M. (2021). Positive and Negative Ions Potently Inhibit the Viability of Airborne Gram-Positive and Gram-Negative Bacteria. Microbiology Spectrum, 9(3), e0065121–e0065121. https://doi.org/10.1128/Spectrum.00651-21

No comments:

Post a Comment